point
Menu
Browse by year:
The Smart Techie was renamed Siliconindia India Edition starting Feb 2012 to continue the nearly two decade track record of excellence of our US edition.

Opportunistic Computing A New Paradigm

Mohan Hebbar
Thursday, August 5, 2010
Mohan Hebbar
Three billion – that is the estimated number of cell phones in the world by the end of 2010. That number excludes other types of access technologies and deployed sensors. The average performance of a cell phone processor is 100 MIPS and communication is at 200 kbps. However one calculates it, three billion cell phones pack in an enormous amount of computing power, memory space, and energy that can be shared in a collaborative way; in a manner that is representative of distributed computing, albeit in a different paradigm. Often referred to as opportunistic computing, this concept actually meshes well with the phenomenon of social networking that has taken the Internet world by storm.

Before we decipher opportunistic computing, let us start by looking at emerging technology applications. LAN, WAN, and CAN are acronyms that we use as part of our language. Add one more, BAN, for Body Area Network, is a network of inter-communicating sensors and mobile devices that are wearable or implanted in the human body in order to monitor vital parameters and transmit the information to a ‘home base station’ and in turn to a hospital. Is it not a set of applications that can heuristically, or through a defined method, assess the lifestyle of a human being? Imagine the volume and kinds of data that can be collected, thereby leading to various business applications including personal care, medical insurance, medical drug research, and so on? One could also include retail data that helps understand buying patterns, hence, consumer behavior and associated market research.

The world is brimming with cell phones, static and mobile sensors, and vehicles with sensing and computing resources. Along with device capabilities, the access technologies available are Wi-Fi, Bluetooth, Wi-MAX, cellular, RFID, and NFC. Stepping back, we can see the opportunity of ‘unlimited’ pair-wise contacts. Opportunistic computing exploits the communication between a pair of devices enabling possible sharing of content, resources, and services. If we take into account the numbers mentioned earlier on the performance of a cell phone processor (100 MIPS) and communication speed (200 kbps), then exploiting the opportunistic contacts can offer the potential to perform at approximately one quadrillion processing tasks and a data exchange in the order of petabytes per second; undoubtedly, a stupendous amount of power. While we have the network infrastructure and computing power, it is up to application scenarios we draw to exploit the existing and ever evolving infrastructure.

So, to reiterate, opportunistic computing is essentially a distributed computing paradigm of a wired network with challenges of intermittent connectivity and delay tolerance. In this paradigm, all pervasive and available communication opportunities are exploited to provide computing services to meet application needs by leveraging available computing resources that are available in the reachable environment.

Challenges of Opportunistic Computing
Getting a bit more specific, if two devices need to perform a collaborative task, they need to know each other’s resources and each other’s shareable services. This specificity at a high-level opens up yet another challenge of trusted collaboration unlike traditional security solutions that have a centralized authority to certify the trustworthiness. The approach will be different in the sense that it requires ‘on the fly’ authentication with ‘any devices’ that can come in the vicinity of another device making use of resources, though the complexity may be eased if it is within an enterprise network. Creating a distributed computing environment where devices could be ‘alien’, can come and go in the vicinity, poses an unstable network and has been a significant area of research.

Share on Twitter
Share on LinkedIn
Share on facebook