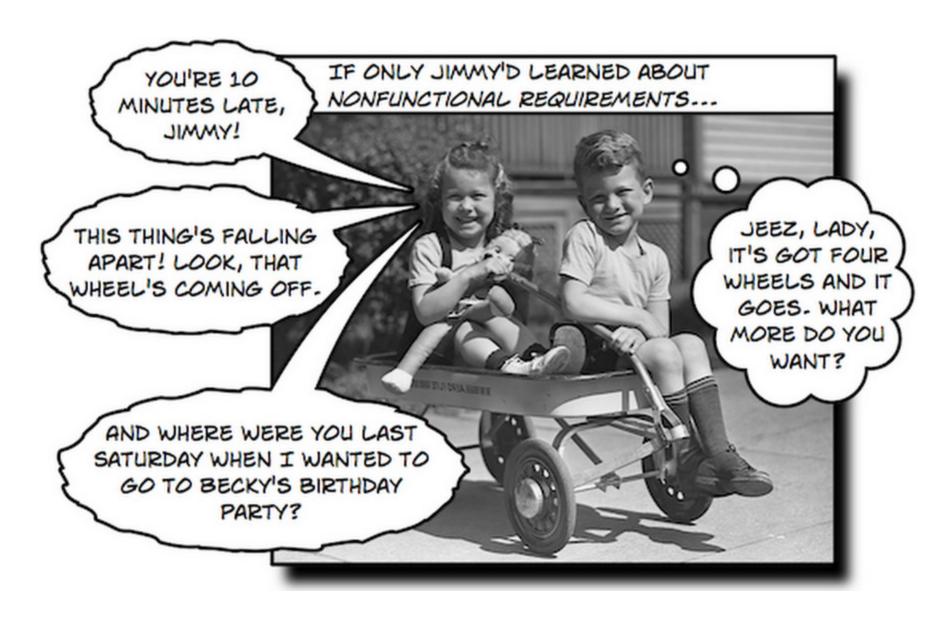


# Best Practices in making production - grade applications


- A Performance Architect's View



Archanaa Panda, Bharathraj – IBM, HiPODS, India SW Labs

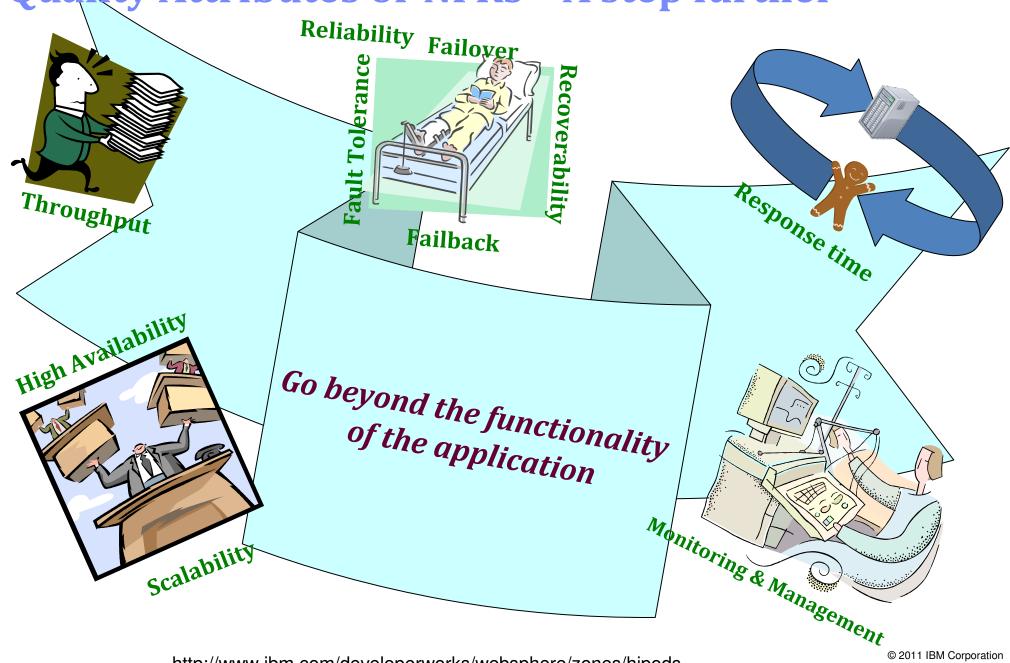


#### Quality Attributes or NFRs - A brief understanding





#### Why are NFRs important?


#### Neglecting NFRs can lead to series of software failures

- Systemic failure in Major European City's Ambulance System.
- System failure because of performance-scalability problems in the Department of Motor Vehicles Licensing system of a US state.
- European automaker recalled more than 50000 cars because of performance delay in airbags software
- System got severely delayed because of performance-scalability problems in a UK based major online retail chain.

#### Do you want your application to be in this list?



## Quality Attributes or NFRs - A step further





## **Build your system right!**

Quantification of quality attributes

- Volumetric Number of concurrent users, number of active users, estimated growth of users, estimated session duration
- Availability Number of working hours, Available maintenance windows, How much time for system upgrades, SLAs
- Performance Response time objective per use case, 85<sup>th</sup> percentile of response time, Throughput (no of transactions completed) per use case time in hrs, minutes, secs



#### Performance metrics - Workload Model

- Build the right NFRs
- Computation mechanism little's law:

Number of concurrent users = Throughput of the system \* (Response time + Total Pause

| Number of users known: |                    |                    |                                       | Response<br>time<br>known |                    |       |                   | Throughput known |        |                |                              |               |
|------------------------|--------------------|--------------------|---------------------------------------|---------------------------|--------------------|-------|-------------------|------------------|--------|----------------|------------------------------|---------------|
| SI.No                  | Business Processes | Number<br>of Users | Split an<br>User<br>A                 | nongst<br>User<br>B       | users<br>User<br>C |       | Response time (s) | TPH              | TPS    | Delay<br>(min) | Total pause<br>time<br>(min) | Total<br>Txns |
| 1                      | Use case 1         | 28                 | 20                                    | 8                         | 0                  | /10   | 5                 | 15               | 0.0042 | 102            | 112                          | 75            |
| 2                      | Use case 2         | 62                 | 60                                    | 2                         | 0                  | // 3  | 5                 | 125              | 0.0347 | 27             | 30                           | 625           |
| 3                      | Use case 3         | 230                | 230                                   | 0                         | 0                  | / / 6 | 5                 | 225              | 0.0625 | 55/            | 61                           | 1125          |
| 4                      | Use case 4         | 76                 | 50                                    | 24                        | 2/                 | 3     | 5                 | 225              | 0.0625 |                | 20                           | 1125          |
| 5                      | Use case 5         | 124                | 100                                   | 4                         | 7                  | 6     | 5                 | 105              | 0.0292 |                | 71                           | 525           |
| 6                      | Use case 6         | 70                 | 0                                     | 0                         | / /                | 3     | 5                 | 300              | 0.083  | /1             | 14                           | 1500          |
| 7                      | Use case 7         | 6                  | 0                                     | 2 /                       |                    | 2     | 5                 | 60               | 0.0    | 4              | 6                            | 300           |
| 8                      | Use case 8         | 20                 | 0                                     | 9                         | þ                  | 3     | 30                | 100              | 9      | 9              | 12                           | 500           |
| 9                      | Use case 9         | 4                  | 0                                     |                           | /4                 | 6     | 60                | 0.5              |        | 473            | 479                          | 2.5           |
|                        | Total              | 620                | 460                                   |                           | 120                |       | Paus              | e tin            | ie per |                |                              | 5778          |
|                        | T =                |                    | usecase calculated using little's law |                           |                    |       |                   |                  |        |                |                              |               |

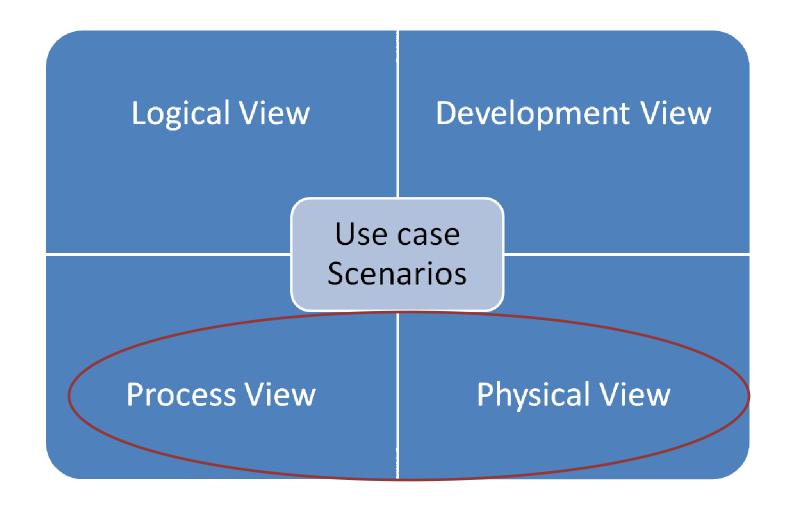
© 2011 IBM Corporation



## It is all about balancing NFRs

- Performance vs Reliability
- Performance vs Interoperability
- Performance vs Security
- Performance vs Manageability
- Manageability vs Scalability

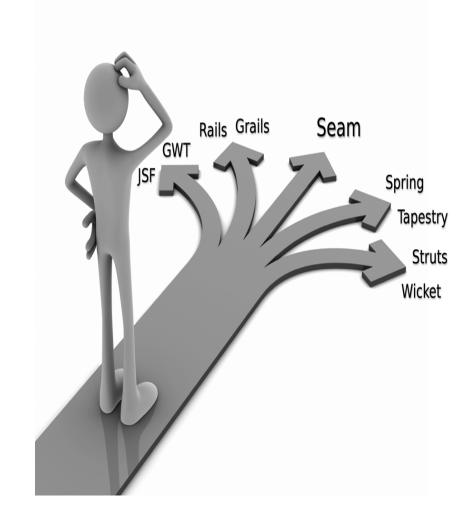





### Example Application domains and most relevant NFRs

| Banking, finance, insurance | Reliability, security, performance, scalability        |
|-----------------------------|--------------------------------------------------------|
| Telecom                     | Performance, scalability, maintainability, reliability |
| Government and military     | Security, reliability                                  |
| Transportation              | Performance, scalability, accuracy, maintainability    |



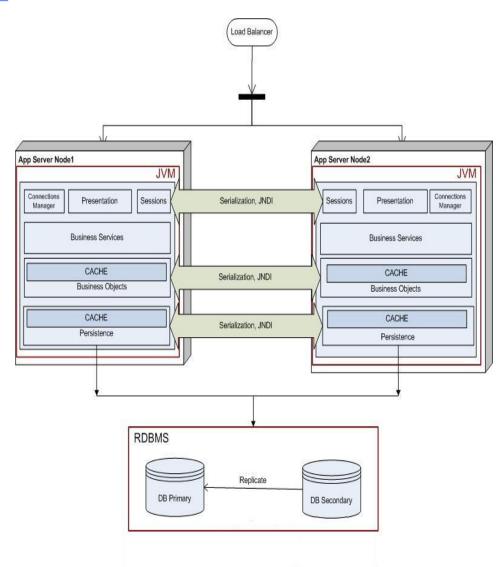

#### The 4+1 Architecture View





## Have you used your framework properly for NFRs?

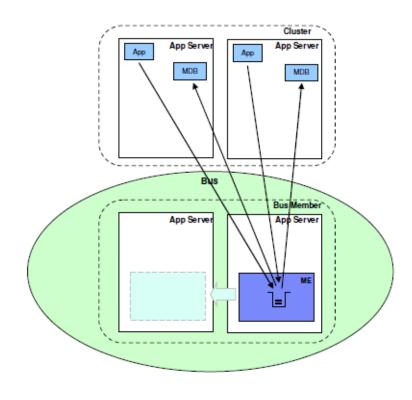
- Reading between the lines
- understanding lifecycle of framework components
- Make framework fit to application, not other way round.
- Evaluate framework for application NFRs

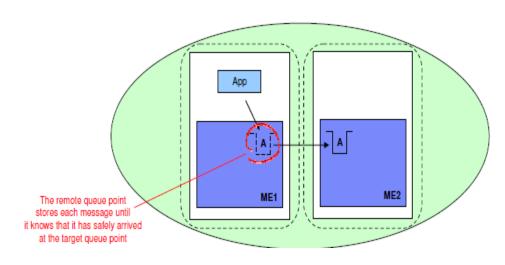





## Deciding topology for application

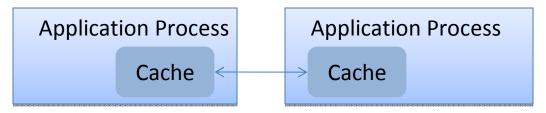
Looking beyond JavaPetStore or PlantsByWebSphere – typical 3-tier applications (default configurations)


- Monolithic vs Distributed
- Horizontal vs Vertical Scalability
- Clustering vs Farming
- Understanding clustering and availability features of application servers – servlet containers and sessions, EJBs, Message Queues

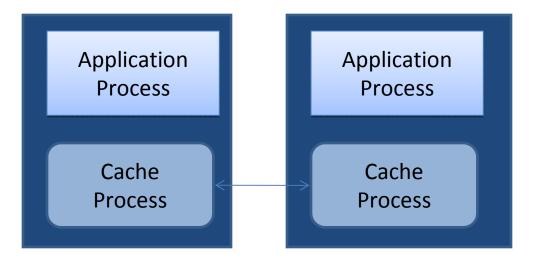




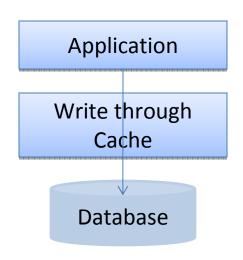

## **Deciding topology for application – eg JMS**

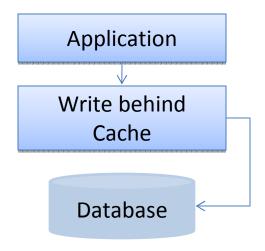








## Deciding topology for application - eg Caching




Co-located cache with Application Process (JVM)



Cache as separate process in same machine







#### Deciding topology for application - some guidelines

- · Separation of business concerns or responsibilities like order capture and payment handling.
- Co-locate modules in same process/JVM when
  - Required to share memory frequently
  - When module1 and module2 are very inter-related or interdependent. Frequent communication and serialization is overhead
- Modules in different process
  - Memory limit 32-bit OS
  - Fault tolerance and Availability



#### Deciding topology for application - some guidelines

- Modules in different processes (contd..)
  - Managing deployment of modules separately
  - Easier to isolate problems
- Modules in different machines
  - CPU, I/O and Memory requirements differ. Eg one module CPU intensive, other module I/O intensive.
  - Easier to isolate problems



## Making monitoring-ready Production Grade Applications

- Logging not the only way to monitor.
- Build simple dashboards. Web Application with numerous pages can accommodate 1 simple monitoring page!
- Make manageability one of your requirements.
- Understand monitoring features of application servers and off-theshelf solutions.
- GUI simplest way to monitor.









#### **CONTACT DETAILS**

Email ID: <u>archanaa.panda@in.ibm.com</u>

■ Phone: +919818661064

http://www.ibm.com/developerworks/websphere/zones/

<u>hipods</u>