SECURITY AUTOMATION FOR PRIVATE CLOUD ENVIRONMENTS

Praveen Karunakaran, CCSK, CISSP, CISSP-ISSAP, CISM Security Lead - HP Cloud Services 24 Sep 2011

1 © Copyright 2010 Hewlett-Packard Development Company, L.P.

Agenda

- Introduction/ Overview
- Business and Technical Drivers
- Limitations of Traditional Security Solutions
- Cloud Security Requirements
- Security Automation Architecture Requirements
- Deployment Approach
- Summary

Questions & Answers Please hold question until the end

WHAT IS CLOUD

Cloud services are highly scalable and elastic technology-enabled services, delivered and consumed over a network through an asneeded, pay-per-use business model

WHAT'S DRIVING THE MOVE TO CLOUD

- 70% of businesses considering or using Private Clouds
- Business is adopting cloud 5x faster than IT
- 70% of IT resources captive in maintenance and operations

Business drivers: Speed, flexibility and economics IT challenges: Sprawl, control and integration

NON CLOUD ENVIRONMENT REALITY Building New Systems

30-45 DAY PROCESS

CLOUD PARADIGM: NEW WORLD ORDER

60 MINUTES TO 6 HOURS

PRIVATE CLOUD SERVICES

Private Cloud Services provides maximum ROI in an efficient and flexible consumption model:

 No capital investment needed
 Flexible, scalable and automated
 Built for running production applications
 Designed for high levels of performance, uptime, security and privacy

PRIVATE CLOUD - FEATURES

SECURING THE CLOUD

SECURITY FOR PRIVATE CLOUD

Problem Statement

- Complex and dynamic operational model
- Abstraction of compute and resources are not bonded to a physical boundary
- Cloud resources like virtual systems, virtual storage, virtual networks etc., are provisioned in real time and there is a requirement to protect these resources when they are provisioned
- The security solutions used in traditional IT environments limit the flexibility, the rapidity of changes, and limit the cost savings enabled by the abstraction of resources in cloud

Security Requirements for Private Cloud Infrastructure

- Security Tools as Distributed Policy Enforcement Points
- Integration with Centralized Security Management Tool
- Real-Time and Automated Security Service Provisioning & De-Provisioning
- Policy Driven Network Segmentation
- Multi Tenancy and Resource Isolation
- Compliance with Industry Standards

SECURITY SERVICE AUTOMATION

Automating Security Deployment and Operations in Private Cloud Environment

AUTOMATION
FOR SECURITY
SERVICE
PROVISIONING

COMPREHENSIVE SECURITY POLICY DATABASE

- Fully Automated Security Service provisioning lifecycle
 Customizable Security Services for individual clients
- Systematically managed changesLesser Time for Service Provisioning
- Comprehensive Security Policy Database
- Customizable Security Templates
- Vendor Neutral Security Policies
- Provision to add Custom Security Requirements

MULTIPLE SECURITY VENDORS Option to chose the preferred security vendor
 Migrate from one vendor to another without changing the Security Policies

PRIVATE CLOUD – SECURITY AUTOMATION

Foundation for Cloud Security Automation

SECURITY AUTOMATION ARCHITECTURE

hp

SUMMARY

- In a cloud infrastructure, security solutions like Firewalls, IDS/IPS, AV, Vulnerability Management etc., should work as distributed policy enforcement points integrated directly into a centralized security management tool
- Real-time and automated security provisioning, network segmentation, compartmentalization and resource isolation are the key success factors for a cloud delivery model
- Developing a Comprehensive Security Policy Database and Integration of Security into Cloud using a Standard Set of Security APIs is a complex process
- Require careful design and integration of various security components within a well designed architecture, and a well designed and tested auto-provisioning rules (policies)

