Developing Java enterprise
applications in minutes
with Spring Roo

Ashish Sarin

The What and the \Why of Spring Roo

Spring Roo CLI

Demo — Flight Booking application

Customizing Roo-generated configuration and code
What more you can do with Spring Roo

Spring Roo architecture

Extending Roo with custom add-ons

The road ahead

The What and the Why of Spring Roo

Productivity improvement tool for developers

Code generator (active and passive) for Spring-based applications

Spans complete lifecycle of the project

Applications follow the best practices in design

Unit and integration tests can be auto-generated

Short learning curve —one only needs to know Spring and Maven.

What you can do with Spring Roo Spring Roo benefits

Proof of concept Prototyping
Development Unit tests
Integration tests Learn Technology
l

Improved productivity

No vendor lock-in

No runtime dependency

Yo vendorieckin
!

Spring Roo CLI

= Spring Roo is a command-line driven tool
= Spring Roo can be integrated with IDEs like STS and Eclipse

= The CLIlis user-friendly; provides TAB-completion features for
commands and arguments, and help and hint commands

[t4.| Spring Roo 1.1.5.RELEASE [rev d3a68c3] - |EI|E|

C:%s11licon_india=roo

Demo - Flight Booking application

Application Requirements

= Ability to manage Flight, FlightDescription, AircraftModel and Booking
entities. Ability to search FlightDescription instances based on origin
and destination fields.

= Web request security

— Web pages for managing Flight, FlightDescription and AircraftModel
entities are accessible to users in ROLE ADMIN role

— Web pages for managing Booking entity instances are accessible to
users in ROLE USER role

= Successful creation of a Booking entity instance results in
aysnchronously sending a confirmation email to the user

= Testing
— Integration testing of entities

— Automated web application testing using Selenium

Demo - Flight Booking application

Domain model

Booking

- bookingld : Long
- name : String
- email : String
- flight : Flight

1.*

FlightDescription

- flightld : Long 1.%
1 - departureDate : Date
- arrivalDate : Date

- flightDesc : FlightDescription
- model : AircraftModel

- bookings : Set<Booking>

- flightDescld : Long
- originCity ; String
- destinationCity ; String
- price : Float

AircraftModel

- modelld @ Long
- model : String

— Many-to-one relationship between Booking and Flight entities
— Many-to-one relationship between Flight and FlightDescription entities

— One-to-one relationship between Flight and AircraftModel

Demo - Flight Booking application

Creating a Roo project

— Roo0 project is nothing but a Maven project

— Command for creating a Roo project: project

.| Spring Roo: com.siliconindia.sample
--topLevelPackage com.s1liconindia.sample --java 6 --projectName flightapp

A _HF [r1n4 . .
A-INF\spring\applicationContext.xm]

Output from executing project command:

— pom.xml file : configured with Spring and Spring Roo annotation
dependencies, Maven Eclipse Plugin, Maven IDEA IDE Plugin, Maven
Tomcat Plugin, Maven Jetty Plugin

— applicationContext.xml : Spring’s application context XML file for the
persistence layer.

Demo - Flight Booking application

Setting up a persistence provider

— Roo supports multiple persistence providers (ex. Hibernate, OpenJPA)

— Database information can be configured in a properties file or fetched
from JNDI

Spring Roo: com.siliconindia.sample
persistence setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

Created 5 AIN_RESOURCES\META- IHF spring\database.properties
Updated [encies org. h'q b:hs qu} :1.8.0 lH org. hThHrHJTH'hThﬁFHJTH core:3.
6.4.Fin; ite -@ yma 4. F1n41 or ' ; s er
:|'I'-- [|:| ' i ali :

> WMETA-INFY, 'pr1ﬂﬂ-4[p11 ationContext.

SRC_MATN_RES S\META-INF\persistence.xm]

Output of executing persistence setup command.:

— pom.xml file is updated to include dependencies corresponding to
Hibernate and database driver

— persistence.xml and database.properties file is created.
applicationContext.xml file is modified to include DataSource bean
definition.

Demo - Flight Booking application

A few words about the generated Java code

= Roo-generated code is divided into two categories:
= Code that is managed by Spring Roo — AspectJ ITD files (.aj extension)

= Code that is managed by developer — Java source files

= At compile-time, code in .aj file is weaved into code contained in Java source
file

Demo - Flight Booking application

Creating JPA entities

The entity command is used for creating JPA entities:

roo> entity --class ~.domain.Flight --identifierColumn FLIGHT_ID --identifierField flightld --identifierType
java.lang.Long --table FLIGHT_TBL --testAutomatically

roo> entity --class ~.domain.FlightDescription --identifierColumn FLIGHT_DESC_ID --identifierField flightDescld --
identifierType java.lang.Long --table FLIGHT_DESC_TBL --testAutomatically

Spring Roo supports following features:
— Composite primary key
— Multiple databases
— Mapped superclasses
— Versioning
— Different inheritance strategies (single, joined, table per class)

— Rich entities (CRUD operations are defined in the entity class)

10

Demo - Flight Booking application

Creating JPA entities (Continued...)

Flight.java

®@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightld", identifierColumn = "FLIGHT_ID", table = "FLIGHT_TBL")
public class Flight {

3

@Roo* annotations are Roo-specific annotations

@Roo* annotations have Retention policy as SOURCE

@Roo* annotations kick-off code generation

@RooEntity informs Roo that Flight is a JPA entity

@RooToString informs Roo to generate toString method for this class
@RooJavaBean informs Roo to generate getters and setters for fields in this class

11

Demo - Flight Booking application

Creating JPA entities (Continued...)

Flight_Roo_Entity.aj generated corresponding to @RooEntity annotation on Flight.java

privileged aspect Flight_Roo_Entity {
declare @type: Flight: @Entity;
declare @type: Flight: @Table(name = "FLIGHT_TBL");

@PersistenceContext
transient EntityManager Flight.entityManager;

@ld

@GeneratedValue(strategy = GenerationType.AUTO)
@Column(name = "FLIGHT_ID")

private Long Flight.flightld;

@Version

@Column(name = "version")

private Integer Flight.version;

public Long Flight.getFlightld() {
return this.flightld;

}

public void Flight.setFlightld(Long id) {
this.flightld = id;
3

12

Demo - Flight Booking application

Adding fields to JPA entities

The field commands are used for adding persistent fields to JPA entities:

roo> field string --class ~.domain.FlightDescription --fieldName originCity --column FLT_ORIGIN --notNull --sizeMin 3 --
sizeMax 20

roo> field string --class ~.domain.FlightDescription --fieldName destinationCity --column FLT_DESTINATION --notNull --
sizeMin 3 --sizeMax 20

FlightDescription.java

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightDescld", identifierColumn = "FLIGHT_DESC_ID", table = "FLIGHT_DESC_TBL")
public class FlightDescription {

@NotNull

@Column(name = "FLT_ORIGIN")
@Size(min = 3, max = 20)
private String originCity;

@NotNull

@Column(name = "FLT_DESTINATION")
@Size(min = 3, max = 20)

private String destinationCity;

@Column(name = "PRICE")
private Float price;

13

Demo - Flight Booking application

Adding fields to JPA entities (Continued...)

Spring Roo supports following features:

14

The field type can be any Java type (field other command)
JSR 303 constraints

Multiple field xxx commands: field boolean, field date, field number, and
SO on

@Embedded annotated fields (field embedded command)

Relationship fields (field set and field reference commands)

Demo - Flight Booking application

Creating relationships between entities

The field reference command is used for creating the ‘many’ side of many-to-
one and ‘one’ side of one-to-one relationship.

Flight

- flightld : Long 1.7
- departureDate : Date
- arrivalDate : Date

- flightDesc : FlightDescription
-model : AircrafiModel

- bookings : Set<Booking>

FlightDescription

- flightDescld : Long
- originCity : String

- destinationCity : String
- price : Float

roo> field reference --class ~.domain.Flight --fieldName flightDescription --type ~.domain.FlightDescription --
joinColumnName FLIGHT_DESC_ID --notNull

Flight.java

@RooJavaBean
@RooToString
@RooEntity(identifierField = "flightld”, identifierColumn = "FLIGHT_ID", table = "FLIGHT_TBL")

public class Flight {

@NotNull

@ManyToOne

@JoinColumn(name = "FLIGHT_DESC_ID")
private FlightDescription flightDescription;

15

Demo - Flight Booking application

Creating relationships between entities (Continued...)

The field set command is used for creating the ‘one’ side of one-to-many and

‘many’ side of many-to-many relationship.
Booking Flight.java

- bookingld : Long
- name : String
- email : String
= flight : Flight

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightld", identifierColumn = "FLIGHT_ID", table =
"FLIGHT_TBL")

1.*% public class Flight {

@0OneToMany(cascade = CascadeType.ALL, mappedBy = "flight")
private Set<Booking> booking = new HashSet<Booking>();

- flightld : Long
1 L departureDate : Date
- arrivalDate : Date

- flightDesc : FlightDescription
- model : AircraftModel

- bookings : Set<Booking>

roo> field set --class ~.domain.Flight --fieldName booking --type ~.domain.Booking --cardinality ONE_TO_MANY --
mappedBy flight

16

Demo - Flight Booking application

Adding dynamic finder methods

= finder list command displays the list of candidate dynamic finder methods

— The depth argument specifies the number of persistent fields to use for listing
the candidate dynamic finder methods

[cv.| Spring Roo: com.siliconindia.sample
finder list --class com.si1liconindia.sample.domain.FlightDescription

= finder add command is for adding a dynamic finder method to an entity

Spring Roo: com.siliconindia.sample
escriptions|Ny

\domain'F1lightDescription.java]
e'.domain\\F1ightDescription_Roo_Finder.aj

17

Demo - Flight Booking application

Scaffolding Spring Web MVC application

= controller all command scaffolds JSPX views and Spring Web MVC
controllers corresponding to JPA entities

roo> controller all --package ~.web

Spring Roo support following features:

— Scaffold Spring Web MVC controller and JSPX views corresponding to a
specific JPA entities (controller scaffold command)

— Manually create a Spring Web MVC controller (controller class command)
— RESTful web controllers (based on HTTP GET, POST, PUT and DELETE)
— Internationalization of messages and labels

— Themes

— Custom tag library (tagx files)

— Apache Tiles 2 framework
18

Demo - Flight Booking application
Scaffolding Spring Web MVC application (Continued...)

Y
oprmg

FLIGHT DESCRIPTION - Welcome to Flightapp
Create new Flight Description
List all Flight Descriptions Welcome to Flightapp
Find by Destination City Like And
Crigin City Like Spring Roo provides interactive, lightweight and user customizable tooling that enables rapid

AIRCRAET MODEL delivery of high performance enterprise Java applications.

Create new Aircraft Model

List all Aircraft Models Home | Language: Sj2 | Theme: standard | alt Sponsored by SpringSource
FLIGHT

Create new Flight

List all Flights

BOOKING

Create new Booking

List all Bookings

19

Demo - Flight Booking application

Adding security to your application

= security setup command adds Spring Security to your application

roo> security setup

Result of executing security setup command:

— An applicationContext-security.xml file is created which configures Spring
Security

— Alogin.jspx view is created which renders the login page of the application

— The web.xml file is updated to use Spring Security filter for intercepting
access to secured resources

— Dependencies related to Spring Security are added to pom.xml file

20

Customizing Roo-generated configuration

Spring Security configuration

= Change web request security configuration:

<intercept-url pattern="/flightdescriptions/**" access="hasRole('ROLE_ADMIN')"/>
<intercept-url pattern="/aircraftmodels/**" access="hasRole('ROLE_ADMIN')"/>
<intercept-url pattern="/flights/**" access="hasRole('ROLE_ADMIN')"/>
<intercept-url pattern="/bookings/**" access="hasRole('ROLE_USER')"/>

= Change authentication provider:

<authentication-manager>
<authentication-provider>
<ldap-user-service group-search-filter=“...“ group-search-base=“..." user-search-base=*..."
user-search-filter=“..." group-role-attribute=“..." />
</authentication-provider>
</authentication-manager>

= Add method-level security:

<global-method-security mode="aspectj" secured-annotations="enabled"/>

21

Sending emails

= email sender, email template setup and field email template commands are
used to add JavaMail support to your application

roo> email sender setup --hostserver xyz
roo> email template setup --from someone@siliconindia.com

roo> field email template --class ~.web.BookingController --async

Result of executing above commands:

— AsendMessage method is added to BookingController class which uses
Spring’s MailSender to send emails

— Email template (from, to) and server (host, username, password) properties
are configured in an email.properties file

— Spring’s MailSender is configured in applicationContext.xml

22

Customizing Roo-generated code

Sending emails

Problem: Modifying create method defined in Aspectd ITD file

privileged aspect BookingController_Roo_Controller {
@RequestMapping(method = RequestMethod.POST)
public String BookingController.create(@Valid Booking booking, ...) {
if (bindingResult.hasErrors()) {
uiModel.addAttribute("booking”, booking);
return "bookings/create”;

}
uiModel.asMap().clear();

booking.persist();
//-- email sending code should come here
return "redirect:/bookings/" + encodeUrlPathSegment(booking.getBookingld().toString(), httpServletRequest);

3
-

Solution: Define the create method in BookController.java or perform Push-in
refactoring

23

What more you can do with Spring Roo

= Create JPA layer from an existing database using Database Reverse
Engineering commands

= Create Flex, Spring Web MVC, GWT and Spring Web Flow applications
= Create applications Spring Web MVC and GWT applications for GAE

= Create applications for Cloud Foundry

= Add JMS support to your applications

= Create Selenium tests

= Add Solr support to your applications

24

Spring Roo architecture

- Built around Apache Felix OSGI container

- Spring Roo consists of base add-ons and core modules

Apache Felix

Base add-ons

Core modules

25

Extending Roo with custom add-ons

Create custom add-ons with Add-on Creator add-on

Option to build simple and advanced add-ons

- Simple add-on is for creating configuration or modifying files and for copying
artifacts

- Advanced add-on is when you want to generate Java code and AspectJ ITDs

Add-on developer works with the utility classes and services provided by
Spring Roo

Developers can also install available installable add-ons from RooBot or
any other repository

26

The road ahead

= The latest production release is 1.1.5
= The latest milestone release is 1.2.0.M1
= |ntegration with MongoDB available in 1.2.0.M1

= A service command is available in 1.2.0.M1 to create application’s service
layer

= Roo shell is 10 times faster in 1.2.0.M1
= JSF/PrimeFaces add-on is planned

= Multi-module Maven support is planned

27

Shameless promotion

Spring Roo 1.1 Cookbook

28

Thank you.

