
Developing Java enterprise

applications in minutes

with Spring Roo

Ashish Sarin

Agenda

 The What and the Why of Spring Roo

 Spring Roo CLI

 Demo – Flight Booking application

 Customizing Roo-generated configuration and code

 What more you can do with Spring Roo

 Spring Roo architecture

 Extending Roo with custom add-ons

 The road ahead

2

The What and the Why of Spring Roo

 Productivity improvement tool for developers

 Code generator (active and passive) for Spring-based applications

 Spans complete lifecycle of the project

 Applications follow the best practices in design

 Unit and integration tests can be auto-generated

 Short learning curve – one only needs to know Spring and Maven.

3

Spring Roo CLI

 Spring Roo is a command-line driven tool

 Spring Roo can be integrated with IDEs like STS and Eclipse

 The CLI is user-friendly; provides TAB-completion features for

commands and arguments, and help and hint commands

4

Demo - Flight Booking application

Application Requirements

 Ability to manage Flight, FlightDescription, AircraftModel and Booking

entities. Ability to search FlightDescription instances based on origin

and destination fields.

 Web request security

– Web pages for managing Flight, FlightDescription and AircraftModel

entities are accessible to users in ROLE_ADMIN role

– Web pages for managing Booking entity instances are accessible to

users in ROLE_USER role

 Successful creation of a Booking entity instance results in

aysnchronously sending a confirmation email to the user

 Testing

– Integration testing of entities

– Automated web application testing using Selenium

5

Demo - Flight Booking application

Domain model

– Many-to-one relationship between Booking and Flight entities

– Many-to-one relationship between Flight and FlightDescription entities

– One-to-one relationship between Flight and AircraftModel
6

Demo - Flight Booking application

Creating a Roo project

– Roo project is nothing but a Maven project

– Command for creating a Roo project: project

Output from executing project command:

– pom.xml file : configured with Spring and Spring Roo annotation

dependencies, Maven Eclipse Plugin, Maven IDEA IDE Plugin, Maven

Tomcat Plugin, Maven Jetty Plugin

– applicationContext.xml : Spring’s application context XML file for the

persistence layer.

7

Demo - Flight Booking application

Setting up a persistence provider

– Roo supports multiple persistence providers (ex. Hibernate, OpenJPA)

– Database information can be configured in a properties file or fetched

from JNDI

Output of executing persistence setup command:

– pom.xml file is updated to include dependencies corresponding to

Hibernate and database driver

– persistence.xml and database.properties file is created.

applicationContext.xml file is modified to include DataSource bean

definition.
8

Demo - Flight Booking application

A few words about the generated Java code

 Roo-generated code is divided into two categories:

 Code that is managed by Spring Roo – AspectJ ITD files (.aj extension)

 Code that is managed by developer – Java source files

 At compile-time, code in .aj file is weaved into code contained in Java source

file

9

Demo - Flight Booking application

Creating JPA entities

The entity command is used for creating JPA entities:

roo> entity --class ~.domain.Flight --identifierColumn FLIGHT_ID --identifierField flightId --identifierType

java.lang.Long --table FLIGHT_TBL –-testAutomatically

roo> entity --class ~.domain.FlightDescription --identifierColumn FLIGHT_DESC_ID --identifierField flightDescId --

identifierType java.lang.Long --table FLIGHT_DESC_TBL --testAutomatically

Spring Roo supports following features:

– Composite primary key

– Multiple databases

– Mapped superclasses

– Versioning

– Different inheritance strategies (single, joined, table per class)

– Rich entities (CRUD operations are defined in the entity class)

10

Demo - Flight Booking application

Creating JPA entities (Continued…)

Flight.java

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightId", identifierColumn = "FLIGHT_ID", table = "FLIGHT_TBL")

public class Flight {

}

 @Roo* annotations are Roo-specific annotations

 @Roo* annotations have Retention policy as SOURCE

 @Roo* annotations kick-off code generation

 @RooEntity informs Roo that Flight is a JPA entity

 @RooToString informs Roo to generate toString method for this class

 @RooJavaBean informs Roo to generate getters and setters for fields in this class

11

Demo - Flight Booking application

Creating JPA entities (Continued…)

Flight_Roo_Entity.aj generated corresponding to @RooEntity annotation on Flight.java

privileged aspect Flight_Roo_Entity {

 declare @type: Flight: @Entity;

 declare @type: Flight: @Table(name = "FLIGHT_TBL");

 @PersistenceContext

 transient EntityManager Flight.entityManager;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "FLIGHT_ID")

 private Long Flight.flightId;

 @Version

 @Column(name = "version")

 private Integer Flight.version;

 public Long Flight.getFlightId() {

 return this.flightId;

 }

 public void Flight.setFlightId(Long id) {

 this.flightId = id;

 }

 …

12

Demo - Flight Booking application

Adding fields to JPA entities

The field commands are used for adding persistent fields to JPA entities:

roo> field string --class ~.domain.FlightDescription --fieldName originCity --column FLT_ORIGIN --notNull --sizeMin 3 --

sizeMax 20

roo> field string --class ~.domain.FlightDescription --fieldName destinationCity --column FLT_DESTINATION --notNull --

sizeMin 3 --sizeMax 20

FlightDescription.java

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightDescId", identifierColumn = "FLIGHT_DESC_ID", table = "FLIGHT_DESC_TBL")

public class FlightDescription {

 @NotNull

 @Column(name = "FLT_ORIGIN")

 @Size(min = 3, max = 20)

 private String originCity;

 @NotNull

 @Column(name = "FLT_DESTINATION")

 @Size(min = 3, max = 20)

 private String destinationCity;

 @Column(name = "PRICE")

 private Float price;

}

13

Demo - Flight Booking application

Adding fields to JPA entities (Continued…)

Spring Roo supports following features:

– The field type can be any Java type (field other command)

– JSR 303 constraints

– Multiple field xxx commands: field boolean, field date, field number, and

so on

– @Embedded annotated fields (field embedded command)

– Relationship fields (field set and field reference commands)

14

Demo - Flight Booking application

Creating relationships between entities

The field reference command is used for creating the ‘many’ side of many-to-

one and ‘one’ side of one-to-one relationship.

roo> field reference --class ~.domain.Flight --fieldName flightDescription --type ~.domain.FlightDescription --

joinColumnName FLIGHT_DESC_ID --notNull

 Flight.java

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightId", identifierColumn = "FLIGHT_ID", table = "FLIGHT_TBL")

public class Flight {

 ...

 @NotNull

 @ManyToOne

 @JoinColumn(name = "FLIGHT_DESC_ID")

 private FlightDescription flightDescription;

 …

}

15

Demo - Flight Booking application

Creating relationships between entities (Continued…)

The field set command is used for creating the ‘one’ side of one-to-many and

‘many’ side of many-to-many relationship.

roo> field set --class ~.domain.Flight --fieldName booking --type ~.domain.Booking --cardinality ONE_TO_MANY --

mappedBy flight

Flight.java

@RooJavaBean

@RooToString

@RooEntity(identifierField = "flightId", identifierColumn = "FLIGHT_ID", table =

"FLIGHT_TBL")

public class Flight {

 ...

 @OneToMany(cascade = CascadeType.ALL, mappedBy = "flight")

 private Set<Booking> booking = new HashSet<Booking>();

 …

}

16

Demo - Flight Booking application

Adding dynamic finder methods

 finder list command displays the list of candidate dynamic finder methods

– The depth argument specifies the number of persistent fields to use for listing

the candidate dynamic finder methods

 finder add command is for adding a dynamic finder method to an entity

17

Demo - Flight Booking application

Scaffolding Spring Web MVC application

 controller all command scaffolds JSPX views and Spring Web MVC

controllers corresponding to JPA entities

roo> controller all --package ~.web

Spring Roo support following features:

– Scaffold Spring Web MVC controller and JSPX views corresponding to a

specific JPA entities (controller scaffold command)

– Manually create a Spring Web MVC controller (controller class command)

– RESTful web controllers (based on HTTP GET, POST, PUT and DELETE)

– Internationalization of messages and labels

– Themes

– Custom tag library (tagx files)

– Apache Tiles 2 framework

18

Demo - Flight Booking application

Scaffolding Spring Web MVC application (Continued...)

19

Demo - Flight Booking application

Adding security to your application

 security setup command adds Spring Security to your application

roo> security setup

Result of executing security setup command:

– An applicationContext-security.xml file is created which configures Spring

Security

– A login.jspx view is created which renders the login page of the application

– The web.xml file is updated to use Spring Security filter for intercepting

access to secured resources

– Dependencies related to Spring Security are added to pom.xml file

20

Customizing Roo-generated configuration

Spring Security configuration

 Change web request security configuration:

 <intercept-url pattern="/flightdescriptions/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/aircraftmodels/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/flights/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/bookings/**" access="hasRole('ROLE_USER')"/>

 Change authentication provider:

<authentication-manager>

 <authentication-provider>

 <ldap-user-service group-search-filter=“…“ group-search-base=“…" user-search-base=“…"

 user-search-filter=“…" group-role-attribute=“…" />

 </authentication-provider>

</authentication-manager>

 Add method-level security:

<global-method-security mode="aspectj" secured-annotations="enabled"/>

21

Sending emails

 email sender, email template setup and field email template commands are

used to add JavaMail support to your application

roo> email sender setup –-hostserver xyz

roo> email template setup –-from someone@siliconindia.com

roo> field email template --class ~.web.BookingController --async

Result of executing above commands:

– A sendMessage method is added to BookingController class which uses

Spring’s MailSender to send emails

– Email template (from, to) and server (host, username, password) properties

are configured in an email.properties file

– Spring’s MailSender is configured in applicationContext.xml

22

Customizing Roo-generated code

Sending emails

Problem: Modifying create method defined in AspectJ ITD file

privileged aspect BookingController_Roo_Controller {

 @RequestMapping(method = RequestMethod.POST)

 public String BookingController.create(@Valid Booking booking, ...) {

 if (bindingResult.hasErrors()) {

 uiModel.addAttribute("booking", booking);

 return "bookings/create";

 }

 uiModel.asMap().clear();

 booking.persist();

 //-- email sending code should come here

 return "redirect:/bookings/" + encodeUrlPathSegment(booking.getBookingId().toString(), httpServletRequest);

 }

 ...

}

Solution: Define the create method in BookController.java or perform Push-in

refactoring

23

What more you can do with Spring Roo

 Create JPA layer from an existing database using Database Reverse

Engineering commands

 Create Flex, Spring Web MVC, GWT and Spring Web Flow applications

 Create applications Spring Web MVC and GWT applications for GAE

 Create applications for Cloud Foundry

 Add JMS support to your applications

 Create Selenium tests

 Add Solr support to your applications

24

Spring Roo architecture

- Built around Apache Felix OSGi container

- Spring Roo consists of base add-ons and core modules

25

Extending Roo with custom add-ons

 Create custom add-ons with Add-on Creator add-on

 Option to build simple and advanced add-ons

- Simple add-on is for creating configuration or modifying files and for copying

artifacts

- Advanced add-on is when you want to generate Java code and AspectJ ITDs

 Add-on developer works with the utility classes and services provided by

Spring Roo

 Developers can also install available installable add-ons from RooBot or

any other repository

26

The road ahead

 The latest production release is 1.1.5

 The latest milestone release is 1.2.0.M1

 Integration with MongoDB available in 1.2.0.M1

 A service command is available in 1.2.0.M1 to create application’s service

layer

 Roo shell is 10 times faster in 1.2.0.M1

 JSF/PrimeFaces add-on is planned

 Multi-module Maven support is planned

27

Shameless promotion

28

Thank you.

